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Cancer histology reflects underlying molecular processes and disease
progression and contains rich phenotypic information that is predictive
of patient outcomes. In this study, we show a computational approach
for learning patient outcomes from digital pathology images using
deep learning to combine the power of adaptive machine learning
algorithms with traditional survival models. We illustrate how these
survival convolutional neural networks (SCNNs) can integrate infor-
mation from both histology images and genomic biomarkers into a
single unified framework to predict time-to-event outcomes and show
prediction accuracy that surpasses the current clinical paradigm for
predicting the overall survival of patients diagnosed with glioma. We
use statistical sampling techniques to address challenges in learning
survival from histology images, including tumor heterogeneity and
the need for large training cohorts. We also provide insights into the
prediction mechanisms of SCNNs, using heat map visualization to
show that SCNNs recognize important structures, like microvascu-
lar proliferation, that are related to prognosis and that are used by
pathologists in grading. These results highlight the emerging role
of deep learning in precision medicine and suggest an expanding
utility for computational analysis of histology in the future practice
of pathology.
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Histology has been an important tool in cancer diagnosis and
prognostication for more than a century. Anatomic pathol-

ogists evaluate histology for characteristics, like nuclear atypia,
mitotic activity, cellular density, and tissue architecture, in-
corporating cytologic details and higher-order patterns to classify
and grade lesions. Although prognostication increasingly relies
on genomic biomarkers that measure genetic alterations, gene
expression, and epigenetic modifications, histology remains an
important tool in predicting the future course of a patient’s
disease. The phenotypic information present in histology reflects
the aggregate effect of molecular alterations on cancer cell be-
havior and provides a convenient visual readout of disease ag-
gressiveness. However, human assessments of histology are
highly subjective and are not repeatable; hence, computational
analysis of histology imaging has received significant attention.
Aided by advances in slide scanning microscopes and computing,
a number of image analysis algorithms have been developed for
grading (1–4), classification (5–10), and identification of lymph
node metastases (11) in multiple cancer types.
Deep convolutional neural networks (CNNs) have emerged as

an important image analysis tool and have shattered perfor-
mance benchmarks in many challenging applications (12). The
ability of CNNs to learn predictive features from raw image data
is a paradigm shift that presents exciting opportunities in medical
imaging (13–15). Medical image analysis applications have
heavily relied on feature engineering approaches, where algorithm
pipelines are used to explicitly delineate structures of interest
using segmentation algorithms to measure predefined features of

these structures that are believed to be predictive and to use
these features to train models that predict patient outcomes. In
contrast, the feature learning paradigm of CNNs adaptively
learns to transform images into highly predictive features for a
specific learning objective. The images and patient labels are
presented to a network composed of interconnected layers of
convolutional filters that highlight important patterns in the
images, and the filters and other parameters of this network are
mathematically adapted to minimize prediction error. Feature
learning avoids biased a priori definition of features and does not
require the use of segmentation algorithms that are often con-
founded by artifacts and natural variations in image color and
intensity. While feature learning has become the dominant
paradigm in general image analysis tasks, medical applications
pose unique challenges. Large amounts of labeled data are
needed to train CNNs, and medical applications often suffer
from data deficits that limit performance. As “black box” mod-
els, CNNs are also difficult to deconstruct, and therefore, their
prediction mechanisms are difficult to interpret. Despite these
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challenges, CNNs have been successfully used extensively for
medical image analysis (9, 11, 16–26).
Many important problems in the clinical management of

cancer involve time-to-event prediction, including accurate pre-
diction of overall survival and time to progression. Despite
overwhelming success in other applications, deep learning has
not been widely applied to these problems. Survival analysis has
often been approached as a binary classification problem by
predicting dichotomized outcomes at a specific time point (e.g.,
5-y survival) (27). The classification approach has important
limitations, as subjects with incomplete follow-up cannot be used
in training, and binary classifiers do not model the probability of
survival at other times. Time-to-event models, like Cox re-
gression, can utilize all subjects in training and model their
survival probabilities for a range of times with a single model.
Neural network-based Cox regression approaches were explored
in early machine learning work using datasets containing tens of
features, but subsequent analysis found no improvement over
basic linear Cox regression (28). More advanced “deep” neural
networks that are composed of many layers were recently
adapted to optimize Cox proportional hazard likelihood and
were shown to have equal or superior performance in predicting
survival using genomic profiles containing hundreds to tens of
thousands of features (29, 30) and using basic clinical profiles
containing 14 features (31).
Learning survival from histology is considerably more difficult,

and a similar approach that combined Cox regression with CNNs
to predict survival from lung cancer histology achieved only
marginally better than random accuracy (0.629 c index) (32).
Time-to-event prediction faces many of the same challenges as
other applications where CNNs are used to analyze histology.
Compared with genomic or clinical datasets, where features have
intrinsic meaning, a “feature” in an image is a pixel with meaning
that depends entirely on context. Convolution operations can
learn these contexts, but the resulting networks are complex,
often containing more than 100 million free parameters, and
thus, large cohorts are needed for training. This problem is in-
tensified in time-to-event prediction, as clinical follow-up is often
difficult to obtain for large cohorts. Data augmentation tech-
niques have been adopted to address this problem, where ran-
domized rotations and transformations of contrast and
brightness are used to synthesize additional training data (9, 11,
14, 15, 17, 19, 25, 26, 33). Intratumoral heterogeneity also pre-
sents a significant challenge in time-to-event prediction, as a
tissue biopsy often contains a range of histologic patterns that
correspond to varying degrees of disease progression or aggres-
siveness. The method for integrating information from hetero-
geneous regions within a sample is an important consideration in
predicting outcomes. Furthermore, risk is often reflected in
subtle changes in multiple histologic criteria that can require
years of specialized training for human pathologists to recognize
and interpret. Developing an algorithm that can learn the con-
tinuum of risks associated with histology can be more challenging
than for other learning tasks, like cell or region classification.
In this paper, we present an approach called survival con-

volutional neural networks (SCNNs), which provide highly ac-
curate prediction of time-to-event outcomes from histology
images. Using diffuse gliomas as a driving application, we show
how the predictive accuracy of SCNNs is comparable with
manual histologic grading by neuropathologists. We further ex-
tended this approach to integrate both histology images and
genomic biomarkers into a unified prediction framework that
surpasses the prognostic accuracy of the current WHO paradigm
based on genomic classification and histologic grading. Our
SCNN framework uses an image sampling and risk filtering
technique that significantly improves prediction accuracy by
mitigating the effects of intratumoral heterogeneity and deficits
in the availability of labeled data for training. Finally, we use

heat map visualization techniques applied to whole-slide images
to show how SCNNs learn to recognize important histologic
structures that neuropathologists use in grading diffuse gliomas
and suggest relevance for patterns with prognostic significance
that is not currently appreciated. We systematically validate our
approaches by predicting overall survival in gliomas using data
from The Cancer Genome Atlas (TCGA) Lower-Grade Glioma
(LGG) and Glioblastoma (GBM) projects.

Results
Learning Patient Outcomes with Deep Survival Convolutional Neural
Networks. The SCNN model architecture is depicted in Fig. 1
(Fig. S1 shows a detailed diagram). H&E-stained tissue sections are
first digitized to whole-slide images. These images are reviewed
using a web-based platform to identify regions of interest (ROIs)
that contain viable tumor with representative histologic character-
istics and that are free of artifacts (Methods) (34, 35). High-power
fields (HPFs) from these ROIs are then used to train a deep con-
volutional network that is seamlessly integrated with a Cox pro-
portional hazards model to predict patient outcomes. The network
is composed of interconnected layers of image processing opera-
tions and nonlinear functions that sequentially transform the HPF
image into highly predictive prognostic features. Convolutional
layers first extract visual features from the HPF at multiple scales
using convolutional kernels and pooling operations. These image-
derived features feed into fully connected layers that perform ad-
ditional transformations, and then, a final Cox model layer outputs
a prediction of patient risk. The interconnection weights and con-
volutional kernels are trained by comparing risk predicted by the
network with survival or other time-to-event outcomes using a
backpropagation technique to optimize the statistical likelihood of
the network (Methods).
To improve the performance of SCNN models, we developed

a sampling and risk filtering technique to address intratumoral
heterogeneity and the limited availability of training samples
(Fig. 2). In training, new HPFs are randomly sampled from each
ROI at the start of each training iteration, providing the SCNN
model with a fresh look at each patient’s histology and capturing
heterogeneity within the ROI. Each HPF is processed using
standard data augmentation techniques that randomly trans-
form the field to reinforce network robustness to tissue orien-
tation and variations in staining (33). The SCNN is trained
using multiple transformed HPFs for each patient (one for each
ROI) to further account for intratumoral heterogeneity across
ROIs. For prospective prediction, we first sample multiple
HPFs within each ROI to generate a representative collection
of fields for the patient. The median risk is calculated within
each ROI, and then, these median risks are sorted and filtered
to predict a robust patient-level risk that reflects the aggres-
siveness of their disease while rejecting any outlying risk pre-
dictions. These sampling and filtering procedures are described
in detail in Methods.

Assessing the Prognostic Accuracy of SCNN. To assess the prognostic
accuracy of SCNN, we assembled whole-slide image tissue sections
from formalin-fixed, paraffin-embedded specimens and clinical
follow-up for 769 gliomas from the TCGA (Dataset S1). This
dataset comprises lower-grade gliomas (WHO grades II and III)
and glioblastomas (WHO grade IV), contains both astrocytomas
and oligodendrogliomas, and has overall survivals ranging from
less than 1 to 14 y or more. A summary of demographics, grades,
survival, and molecular subtypes for this cohort is presented in
Table S1. The Digital Slide Archive was used to identify ROIs in
1,061 H&E-stained whole-slide images from these tumors.
The prognostic accuracy of SCNN models was assessed using

Monte Carlo cross-validation. We randomly split our cohort into
paired training (80%) and testing (20%) sets to generate
15 training/testing set pairs. We trained an SCNN model using
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each training set and then, evaluated the prognostic accuracy of
these models on the paired testing sets, generating a total of
15 accuracy measurements (Methods and Dataset S1). Accuracy was
measured using Harrell’s c index, a nonparametric statistic that
measures concordance between predicted risks and actual sur-
vival (36). A c index of 1 indicates perfect concordance between

predicted risk and overall survival, and a c index of 0.5 corresponds
to random concordance.
For comparison, we also assessed the prognostic accuracy of

baseline linear Cox models generated using the genomic bio-
markers and manual histologic grades from the WHO classifi-
cation of gliomas (Fig. 3A). The WHO assigns the diffuse gliomas
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to three genomic subtypes defined by mutations in the isocitrate
dehydrogenase (IDH) genes (IDH1/IDH2) and codeletion of

chromosomes 1p and 19q. Within these molecular subtypes, gliomas
are further assigned a histologic grade based on criteria that vary

Comparing histologic grade and SCNN-based risk categoriesD
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Fig. 3. Prognostication criteria for diffuse gliomas. (A) Prognosis in the diffuse gliomas is determined by genomic classification and manual histologic
grading. Diffuse gliomas are first classified into one of three molecular subtypes based on IDH1/IDH2 mutations and the codeletion of chromosomes 1p and
19q. Grade is then determined within each subtype using histologic characteristics. Subtypes with an astrocytic lineage are split by IDH mutation status, and
the combination of 1p/19q codeletion and IDH mutation defines an oligodendroglioma. These lineages have histologic differences; however, histologic
evaluation is not a reliable predictor of molecular subtype (37). Histologic criteria used for grading range from nuclear morphology to higher-level patterns,
like necrosis or the presence of abnormal microvascular structures. (B) Comparison of the prognostic accuracy of SCNN models with that of baseline models
based on molecular subtype or molecular subtype and histologic grade. Models were evaluated over 15 independent training/testing sets with randomized
patient assignments and with/without training and testing sampling. (C) The risks predicted by the SCNN models correlate with both histologic grade and
molecular subtype, decreasing with grade and generally trending with the clinical aggressiveness of genomic subtypes. (D) Kaplan–Meier plots comparing
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depending on cell of origin (either astrocytic or oligodendroglial).
These criteria include mitotic activity, nuclear atypia, the presence
of necrosis, and the characteristics of microvascular structures
(microvascular proliferation). Histologic grade remains a significant
determinant in planning treatment for gliomas, with grades III
and IV typically being treated aggressively with radiation and
concomitant chemotherapy.
SCNN models showed substantial prognostic power, achieving

a median c index of 0.754 (Fig. 3B). SCNN models also per-
formed comparably with manual histologic-grade baseline
models (median c index 0.745, P = 0.307) and with molecular
subtype baseline models (median c index 0.746, P = 4.68e-2).
Baseline models representing WHO classification that in-
tegrate both molecular subtype and manual histologic grade
performed slightly better than SCNN, with a median c index of
0.774 (Wilcoxon signed rank P = 2.61e-3).
We also evaluated the impact of the sampling and ranking

procedures shown in Fig. 2 in improving the performance of
SCNN models. Repeating the SCNN experiments without these
sampling techniques reduced the median c index of SCNN
models to 0.696, significantly worse than for models where
sampling was used (P = 6.55e-4).

SCNN Predictions Correlate with Molecular Subtypes and Manual
Histologic Grade. To further investigate the relationship between
SCNN predictions and the WHO paradigm, we visualized how
risks predicted by SCNN are distributed across molecular sub-
type and histologic grade (Fig. 3C). SCNN predictions were
highly correlated with both molecular subtype and grade and
were consistent with expected patient outcomes. First, within
each molecular subtype, the risks predicted by SCNN increase
with histologic grade. Second, predicted risks are consistent with
the published expected overall survivals associated with molec-
ular subtypes (37). IDH WT astrocytomas are, for the most part,
highly aggressive, having a median survival of 18 mo, and the
collective predicted risks for these patients are higher than for
patients from other subtypes. IDH mutant astrocytomas are an-
other subtype with considerably better overall survival ranging
from 3 to 8 y, and the predicted risks for patients in this subtype
are more moderate. Notably, SCNN risks for IDH mutant as-
trocytomas are not well-separated for grades II and III, consis-
tent with reports of histologic grade being an inadequate
predictor of outcome in this subtype (38). Infiltrating gliomas
with the combination of IDH mutations and codeletion of
chromosomes 1p/19q are classified as oligodendrogliomas in the
current WHO schema, and these have the lowest overall pre-
dicted risks consistent with overall survivals of 10+ y (37, 39).
Finally, we noted a significant difference in predicted risks when
comparing the IDH mutant and IDH WT grade III astrocytomas
(rank sum P = 6.56e-20). These subtypes share an astrocytic
lineage and are graded using identical histologic criteria. Al-
though some histologic features are more prevalent in IDH-
mutant astrocytomas, these features are not highly specific or
sensitive to IDH mutant tumors and cannot be used to reliably
predict IDH mutation status (40). Risks predicted by SCNN are
consistent with worse outcomes for IDHWT astrocytomas in this
case (median survival 1.7 vs. 6.3 y in the IDH mutant counter-
parts), suggesting that SCNN models can detect histologic dif-
ferences associated with IDH mutations in astrocytomas.
We also performed a Kaplan–Meier analysis to compare

manual histologic grading with “digital grades” based on SCNN
risk predictions (Fig. 3D). Low-, intermediate-, and high-risk
categories were established by setting thresholds on SCNN pre-
dictions to reflect the proportions of manual histologic grades in
each molecular subtype (Methods). We observed that, within
each subtype, the differences in survival captured by SCNN risk
categories are highly similar to manual histologic grading. SCNN
risk categories and manual histologic grades have similar prognostic

power in IDH WT astrocytomas (log rank P = 1.23e-12 vs. P =
7.56e-11, respectively). In IDHmutant astrocytomas, both SCNN
risk categories and manual histologic grades have difficulty
separating Kaplan–Meier curves for grades II and III, but both
clearly distinguish grade IV as being associated with worse out-
comes. Discrimination for oligodendroglioma survival is also
similar between SCNN risk categories and manual histologic
grades (log rank P = 9.73e-7 vs. P = 8.63e-4, respectively).

Improving Prognostic Accuracy by Integrating Genomic Biomarkers.
To integrate both histologic and genomic data into a single
unified prediction framework, we developed a genomic survival
convolutional neural network (GSCNN model). The GSCNN
learns from genomics and histology simultaneously by incorporating
genomic data into the fully connected layers of the SCNN (Fig. 4).
Both data are presented to the network during training, enabling
genomic variables to influence the patterns learned by the SCNN by
providing molecular subtype information.
We repeated our experiments using GSCNN models with

histology images, IDH mutation status, and 1p/19q codeletion as
inputs and found that the median c index improved from 0.754 to
0.801. The addition of genomic variables improved performance
by 5% on average, and GSCNN models significantly outperform
the baseline WHO subtype-grade model trained on equivalent
data (signed rank P = 1.06e-2). To assess the value of integrating
genomic variables directly into the network during training, we
compared GSCNN with a more superficial integration approach,
where an SCNN model was first trained using histology images,
and then, the risks from this model were combined with IDH and
1p/19q variables in a simple three-variable Cox model (Fig. S2).
Processing genomic variables in the fully connected layers and
including them in training provided a statistically significant
benefit; models trained using the superficial approach performed
worse than GSCNN models with median c index decreasing to
0.785 (signed rank P = 4.68e-2).
To evaluate the independent prognostic power of risks pre-

dicted by SCNN and GSCNN, we performed a multivariable Cox
regression analysis (Table 1). In a multivariable regression that
included SCNN risks, subtype, grade, age, and sex, SCNN risks
had a hazard ratio of 3.05 and were prognostic when correcting
for all other features, including manual grade and molecular
subtype (P = 2.71e-12). Molecular subtype was also significant in
the SCNN multivariable regression model, but histologic grade
was not. We also performed a multivariable regression with
GSCNN risks and found GSCNN to be significant (P = 9.69e-12)
with a hazard ratio of 8.83. In the GSCNN multivariable re-
gression model, molecular subtype was not significant, but his-
tologic grade was marginally significant. We also used Kaplan–
Meier analysis to compare risk categories generated from SCNN
and GSCNN (Fig. S3). Survival curves for SCNN and GSCNN
were very similar when evaluated on the entire cohort. In con-
trast, their abilities to discriminate survival within molecular
subtypes were notably different.

Visualizing Histologic Patterns Associated with Prognosis. Deep
learning networks are often criticized for being black box ap-
proaches that do not reveal insights into their prediction mech-
anisms. To investigate the visual patterns that SCNN models
associate with poor outcomes, we used heat map visualizations to
display the risks predicted by our network in different regions of
whole-slide images. Transparent heat map overlays are fre-
quently used for visualization in digital pathology, and in our
study, these overlays enable pathologists to correlate the pre-
dictions of highly accurate survival models with the underlying
histology over the expanse of a whole-slide image. Heat maps
were generated using a trained SCNN model to predict the risk
for each nonoverlapping HPF in a whole-slide image. The pre-
dicted risks were used to generate a color-coded transparent
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overlay, where red and blue indicate higher and lower SCNN
risk, respectively.
A selection of risk heat maps from three patients is presented

in Fig. 5, with inlays showing how SCNNs associate risk with
important pathologic phenomena. For TCGA-DB-5273 (WHO
grade III, IDH mutant astrocytoma), the SCNN heat map clearly
and specifically highlights regions of early microvascular pro-
liferation, an advanced form of angiogenesis that is a hallmark of
malignant progression, as being associated with high risk. Risk in
this heat map also increases with cellularity, heterogeneity in
nuclear shape and size (pleomorphism), and the presence of
abnormal microvascular structures. Regions in TCGA-S9-
A7J0 have varying extents of tumor infiltration ranging from
normal brain to sparsely infiltrated adjacent normal regions
exhibiting satellitosis (where neoplastic cells cluster around
neurons) to moderately and highly infiltrated regions. This heat
map correctly associates the lowest risks with normal brain re-
gions and can distinguish normal brain from adjacent regions
that are sparsely infiltrated. Interestingly, higher risks are
assigned to sparsely infiltrated regions (region 1, Top) than to
regions containing relatively more tumor infiltration (region 2,
Top). We observed a similar pattern in TCGA-TM-A84G, where
edematous regions (region 1, Bottom) adjacent to moderately
cellular tumor regions (region 1, Top) are also assigned higher
risks. These latter examples provide risk features embedded
within histologic sections that have been previously unrecognized
and could inform and improve pathology practice.

Discussion
We developed a deep learning approach for learning survival
directly from histological images and created a unified frame-
work for integrating histology and genomic biomarkers for pre-
dicting time-to-event outcomes. We systematically evaluated the
prognostic accuracy of our approaches in the context of the

current clinical standard based on genomic classification and
histologic grading of gliomas. In contrast to a previous study that
achieved only marginally better than random prediction accu-
racy, our approach rivals or exceeds the accuracy of highly
trained human experts in predicting survival. Our study provides
insights into applications of deep learning in medicine and the
integration of histology and genomic data and provides methods
for dealing with intratumoral heterogeneity and training data
deficits when using deep learning algorithms to predict survival
from histology images. Using visualization techniques to gain
insights into SCNN prediction mechanisms, we found that
SCNNs clearly recognize known and time-honored histologic
predictors of poor prognosis and that SCNN predictions suggest
prognostic relevance for histologic patterns with significance that
is not currently appreciated by neuropathologists.
Our study investigated the ability to predict overall survival in

diffuse gliomas, a disease with wide variations in outcomes and
an ideal test case where histologic grading and genomic classi-
fications have independent prognostic power. Treatment plan-
ning for gliomas is dependent on many factors, including patient
age and grade, but gliomas assigned to WHO grades III and IV
are typically treated very aggressively with radiation and con-
comitant chemotherapy, whereas WHO grade II gliomas may be
treated with chemotherapy or even followed in some cases (41).
Histologic diagnosis and grading of gliomas have been limited by
considerable intra- and interobserver variability (42). While the
emergence of molecular subtyping has resolved uncertainty re-
lated to lineage, criteria for grading need to be redefined in the
context of molecular subtyping. For example, some morphologic
features used to assess grade (e.g., mitotic activity) are no longer
prognostic in IDH mutant astrocytomas (38). The field of neuro-
oncology is currently awaiting features that can better discriminate
more aggressive gliomas from those that are more indolent. Im-
proving the accuracy and objectivity of grading will directly impact
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Fig. 4. GSCNN models integrate genomic and imaging data for improved performance. (A) A hybrid architecture was developed to combine histology image
and genomic data to make integrated predictions of patient survival. These models incorporate genomic variables as inputs to their fully connected layers.
Here, we show the incorporation of genomic variables for gliomas; however, any number of genomic or proteomic measurements can be similarly used.
(B) The GSCNN models significantly outperform SCNN models as well as the WHO paradigm based on genomic subtype and histologic grading.

Table 1. Hazard ratios for single- and multiple-variable Cox regression models

Variable

Single variable Multivariable (SCNN) Multivariable (GSCNN)

c Index Hazard ratio 95% CI P value Hazard ratio 95% CI P value Hazard ratio 95% CI P value

SCNN 0.741 7.15 5.64, 9.07 2.08e-61 3.05 2.22, 4.19 2.71e-12 — — —

GSCNN 0.781 12.60 9.34, 17.0 3.08e-64 — — — 8.83 4.66, 16.74 9.69e-12
IDH WT astrocytoma 0.726 9.21 6.88, 12.34 3.48e-52 4.73 2.57, 8.70 3.49e-7 0.97 0.43, 2.17 0.93
IDH mutant astrocytoma — 0.23 0.170, 0.324 2.70e-19 2.35 1.27, 4.34 5.36e-3 1.67 0.90, 3.12 0.10
Histologic grade IV 0.721 7.25 5.58, 9.43 2.68e-51 1.52 0.839, 2.743 0.159 1.98 1.11, 3.51 0.017
Histologic grade III — 0.44 0.332, 0.591 1.66e-08 1.57 0.934, 2.638 0.0820 1.78 1.07, 2.97 0.024
Age 0.744 1.77 1.63, 1.93 2.52e-42 1.33 1.20, 1.47 9.57e-9 1.34 1.22, 1.48 9.30e-10
Sex, female 0.552 0.89 0.706, 1.112 0.29 0.85 0.67, 1.08 0.168 0.86 0.68, 1.08 0.18

Bold indicates statistical significance (P < 5e-2).
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patient care by identifying patients who can benefit from more
aggressive therapeutic regimens and by sparing those with less
aggressive disease from unnecessary treatment.
Remarkably, SCNN performed as well as manual histologic

grading or molecular subtyping in predicting overall survival in
our dataset, despite using only a very small portion of each his-
tology image for training and prediction. Additional investigation

of the associations between SCNN risk predictions, molecular
subtypes, and histologic grades revealed that SCNN can effec-
tively discriminate outcomes within each molecular subtype, ef-
fectively performing digital histologic grading. Furthermore,
SCNN can effectively recognize histologic differences associated
with IDH mutations in astrocytomas and predict outcomes for
these patients accordingly. SCNNs correctly predicted lower
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Fig. 5. Visualizing risk with whole-slide SCNN heat maps. We performed SCNN predictions exhaustively within whole-slide images to generate heat map overlays
of the risks that SCNN associates with different histologic patterns. Red indicates relatively higher risk, and blue indicates lower risk (the scale for each slide is
different). (Top) In TCGA-DB-5273, SCNN clearly and specifically predicts high risks for regions of early microvascular proliferation (region 1) and also, higher risks
with increasing tumor infiltration and cell density (region 2 vs. 3). (Middle) In TCGA-S9-A7J0, SCNN can appropriately discriminate between normal cortex (region
1 in Bottom) and adjacent regions infiltrated by tumor (region 1 in Top). Highly cellular regions containing prominent microvascular structures (region 3) are again
assigned higher risks than lower-density regions of tumor (region 2). Interestingly, low-density infiltrate in the cortex was associated with high risk (region 1 in
Top). (Bottom) In TCGA-TM-A84G, SCNN assigns high risks to edematous regions (region 1 in Bottom) that are adjacent to tumor (region 1 in Top).
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risks for WHO grade III IDH mutant astrocytomas compared
with WHO grade III IDH WT astrocytomas, consistent with the
considerably longer median survival for patients with IDH mu-
tant astrocytoma (6.3 vs. 1.7 y). While there are histologic fea-
tures of astrocytomas that are understood to be more prevalent
in IDH mutant astrocytomas, including the presence of micro-
cysts and the rounded nuclear morphology of neoplastic nuclei,
these are not reliable predictors of IDH mutations (40).
To integrate genomic information in prognostication, we de-

veloped a hybrid network that can learn simultaneously from
both histology images and genomic biomarkers. The GSCNN
presented in our study significantly outperforms the WHO
standard based on identical inputs. We compared the perfor-
mance of GSCNN and SCNN in several ways to evaluate their
ability to predict survival and to assess the relative importance of
histology and genomic data in GSCNN. GSCNN had signifi-
cantly higher c index scores due to the inclusion of genomic
variables in the training process. Performance significantly de-
clined when using a superficial integration method that combines
genomic biomarkers with a pretrained SCNN model.
In multivariable regression analyses, GSCNN has a much

higher hazard ratio than SCNN (8.83 vs. 3.05). Examining the
other variables in the regression models, we noticed an in-
teresting relationship between the significance of histologic-
grade and molecular subtype variables. In the SCNN regression
analysis, histologic-grade variables were not significant, but
molecular subtype variables were highly significant, indicating
that SCNN could capture histologic information from image data
but could not learn molecular subtype information entirely from
histology. In contrast, molecular subtype information was not
significant in the GSCNN regression analysis. Interestingly,
histologic-grade variables were marginally significant, suggesting
that some prognostic value in the histology images remained
untapped by GSCNN.
Kaplan–Meier analysis showed remarkable similarity in the

discriminative power of SCNN and GSCNN. Additional Kaplan–
Meier analysis of risk categories within molecular subtypes
revealed interesting trends that are consistent with the regression
analyses presented in Table 1. SCNN clearly separates outcomes
within each molecular subtype based on histology. Survival
curves for GSCNN risk categories, however, overlap significantly
in each subtype. Since SCNN models do not have access to ge-
nomic data when making predictions, their ability to discriminate
outcomes was worse in general when assessed by c index or
multivariable regression.
Integration of genomic and histology data into a single pre-

diction framework remains a challenge in the clinical implementa-
tion of computational pathology. Our previous work in developing
deep learning survival models from genomic data has shown that
accurate survival predictions can be learned from high-dimensional
genomic and protein expression signatures (29). Incorporating ad-
ditional genomic variables into GSCNNmodels is an area for future
research and requires larger datasets that combine histology images
with rich genomic and clinical annotations.
While deep learning methods frequently deliver outstanding

performance, the interpretability of black box deep learning
models is limited and remains a significant barrier in their vali-
dation and adoption. Heat map analysis provides insights into
the histologic patterns associated with increased risk and can also
serve as a practical tool to guide pathologists to tissue regions
associated with worse prognosis. The heat maps suggest that
SCNN can learn visual patterns known to be associated with
histologic features related to prognosis and used in grading, in-
cluding microvascular proliferation, cell density, and nuclear
morphology. Microvascular prominence and proliferation are
associated with disease progression in all forms of diffuse glioma,
and these features are clearly delineated as high risk in the heat
map presented for slide TCGA-DB-5273. Likewise, increases in

cell density and nuclear pleomorphism were also associated with
increased risk in all examples. SCNN also assigned high risks to
regions that do not contain well-recognized features associated
with a higher grade or poor prognosis. In region 1 of slide
TCGA-S9-A7J0, SCNN assigns higher risk to sparsely infiltrated
cerebral cortex than to region 2, which is infiltrated by a higher
density of tumor cells (normal cortex in region 1 is properly
assigned a very low risk). Widespread infiltration into distant
sites of the brain is a hallmark of gliomas and results in treatment
failure, since surgical resection of visible tumor often leaves re-
sidual neoplastic infiltrates. Similarly, region 1 of slide TCGA-
TM-A84G illustrates a high risk associated with low-cellularity
edematous regions compared with adjacent oligodendroglioma
with much higher cellularity. Edema is frequently observed
within gliomas and in adjacent brain, and its degree may be re-
lated to the rate of growth (43), but its histologic presence has
not been previously recognized as a feature of aggressive be-
havior or incorporated into grading paradigms. While it is not
entirely clear why SCNN assigns higher risks to the regions in the
sparsely infiltrated or edematous regions, these examples con-
firm that SCNN risks are not purely a function of cellular density
or nuclear atypia. Our human interpretations of these findings
provide possible explanations for why SCNN unexpectedly pre-
dicts high risks in these regions, but these findings need addi-
tional investigation to better understand what specific features
the SCNN network perceives in these regions. Nevertheless, this
shows that SCNN can be used to identify potentially practice-
changing features associated with increased risk that are em-
bedded within pathology images.
Although our study provides insights into the application of

deep learning in precision medicine, it has some important
limitations. A relatively small portion of each slide was used for
training and prediction, and the selection of ROIs within each
slide required expert guidance. Future studies will explore more
advanced methods for automatic selection of regions and for
incorporating a higher proportion of each slide in training and
prediction to better account for intratumoral heterogeneity. We
also plan to pursue the development of enhanced GSCNN models
that incorporate additional molecular features and to evaluate the
value added of histology in these more complex models. In our
Kaplan–Meier analysis, the thresholds used to define risk cate-
gories were determined in a subjective manner using the pro-
portion of manual histologic grades in the TCGA cohort, and a
larger dataset would permit a more rigorous definition of these
thresholds to optimize survival stratification. The interpretation of
risk heat maps was based on subjective evaluation by neuropa-
thologists, and we plan to pursue studies that evaluate heat maps
in a more objective manner to discover and validate histologic
features associated with poor outcomes. Finally, while we have
applied our techniques to gliomas, validation of these approaches
in other diseases is needed and could provide additional insights.
In fact, our methods are not specific to histology imaging or cancer
applications and could be adapted to other medical imaging mo-
dalities and biomedical applications.

Methods
Data and Image Curation. Whole-slide images and clinical and genomic data
were obtained from TCGA via the Genomic Data Commons (https://gdc.
cancer.gov/). Images of diagnostic H&E-stained, formalin-fixed, paraffin-
embedded sections from the Brain LGG and the GBM cohorts were
reviewed to remove images containing tissue-processing artifacts, including
bubbles, section folds, pen markings, and poor staining. Representative ROIs
containing primarily tumor nuclei were manually identified for each slide
that passed a quality control review. This review identified whole-slide im-
ages with poor image quality arising from imaging artifacts or tissue pro-
cessing (bubbles, significant tissue section folds, overstaining, understaining)
where suitable ROIs could not be selected. In the case of grade IV disease,
some regions include microvascular proliferation, as this feature was
exhibited throughout tumor regions. Regions containing geographic necrosis
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were excluded. A total of 1,061 whole-slide images from 769 unique patients
were analyzed.

ROI images (1,024 × 1,024 pixels) were cropped at 20× objective magni-
fication using OpenSlide and color-normalized to a gold standard H&E cal-
ibration image to improve consistency of color characteristics across slides.
HPFs at 256 × 256 pixels were sampled from these regions and used for
training and testing as described below.

Network Architecture and Training Procedures. The SCNN combines elements
of the 19-layer Visual Geometry Group (VGG) convolutional network archi-
tecture with a Cox proportional hazards model to predict time-to-event data
from images (Fig. S1) (44). Image feature extraction is achieved by four
groups of convolutional layers. (i) The first group contains two convolutional
layers with 64 3 × 3 kernels interleaved with local normalization layers and
then followed with a single maximum pooling layer. (ii) The second group
contains two convolutional layers (128 3 × 3 kernels) interleaved with two
local normalization layers followed by a single maximum pooling layer. (iii)
The third group interleaves four convolutional layers (256 3 × 3 kernels) with
four local normalization layers followed by a single maximum pooling layer.
(iv) The fourth group contains interleaves of eight convolutional (512 3 ×
3 kernels) and eight local normalization layers, with an intermediate pooling
layer and a terminal maximum pooling layer. These four groups are fol-
lowed by a sequence of three fully connected layers containing 1,000, 1,000,
and 256 nodes, respectively.

The terminal fully connected layer outputs a prediction of risk R= βTX

associated with the input image, where β∈R256×1 are the terminal layer

weights and X ∈R256×1 are the inputs to this layer. To provide an error signal
for backpropagation, these risks are input to a Cox proportional hazards
layer to calculate the negative partial log likelihood:

Lðβ,XÞ=−
X
i∈U

 
βTXi − log

X
j∈Ωi

e βT Xj

!
, [1]

where βTXi is the risk associated with HPF i, U is the set of right-censored
samples, and Ωi is the set of “at-risk” samples with event or follow-up times
Ωi = fjjYj ≥Yig (where Yi is the event or last follow-up time of patient i).

The adagrad algorithm was used to minimize the negative partial log
likelihood via backpropagation to optimize model weights, biases, and
convolutional kernels (45). Parameters to adagrad include the initial accu-
mulator value = 0.1, initial learning rate = 0.001, and an exponential
learning rate decay factor = 0.1. Model weights were initialized using the
variance scaling method (46), and a weight decay was applied to the fully
connected layers during training (decay rate = 4e-4). Models were trained for
100 epochs (1 epoch is one complete cycle through all training samples) using
minibatches consisting of 14 HPFs each. Each minibatch produces a model
update, resulting in multiple updates per epoch. Calculation of the Cox partial
likelihood requires access to the predicted risks of all samples, which are not
available within any single minibatch, and therefore, Cox likelihood was cal-
culated locally within each minibatch to perform updates (U and Ωi were re-
stricted to samples within each minibatch). Local likelihood calculation can be
very sensitive to how samples are assigned to minibatches, and therefore, we
randomize the minibatch sample assignments at the beginning of each epoch
to improve robustness. Mild regularization was applied during training by
randomly dropping out 5% of weights in the last fully connected layer in each
minibatch during training to mitigate overfitting.

Training Sampling. Each patient has possibly multiple slides and multiple
regions within each slide that can be used to sample HPFs. During training, a
single HPF was sampled from each region, and these HPFs were treated as
semiindependent training samples. Each HPF was paired with patient out-
come for training, duplicating outcomes for patients containing multiple
regions/HPFs. The HPFs are sampled at the beginning of each training epoch
to generate an entirely new set of HPFs. Randomized transforms were also
applied to these HPFs to improve robustness to tissue orientation and color
variations. Since the visual patterns in tissues can often be anisotropic, we
randomly apply a mirror transform to each HPF. We also generate random
transformations of contrast and brightness using the “random_contrast” and
“random_brightness” TensorFlow operations. The contrast factor was ran-
domly selected in the interval [0.2, 1.8], and the brightness was randomly
selected in the interval [−63, 63]. These sampling and transformation pro-
cedures along with the use of multiple HPFs for each patient have the effect
of augmenting the effective size of the labeled training data. In tissues with
pronounced anisotropy, including adenocarcinomas that exhibit prominent
glandular structures, these mirror transformations are intended to improve

the robustness of the network to tissue orientation. Similar approaches for
training data augmentation have shown considerable improvements in
general imaging applications (33).

Testing Sampling, Risk Filtering, and Model Averaging. Sampling was also
performed to increase the robustness and stability of predictions. (i) Nine
HPFs are first sampled from each region j corresponding to patient m. (ii)

The risk of the kth HPF in region j for patient m, denoted R j,k
m , is then cal-

culated using the trained SCNN model. (iii ) The median risk

R j
m =mediankfR j,k

m g is calculated for region j using the aforementioned HPFs
to reject outlying risks. (iv) These median risks are then sorted from highest

to lowest cR1
m > cR2

m > cR3
m . . . , where the superscript index now corresponds to

the risk rank. (v) The risk prediction for patient m is then selected as the

second highest risk R*m = cR2
m. This filtering procedure was designed to emu-

late how a pathologist integrates information from multiple areas within a
slide, determining prognosis based on the region associated with the worst
prognosis. Selection of the second highest risk (as opposed to the highest
risk) introduces robustness to outliers or high risks that may occur due to
some imaging or tissue-processing artifact.

Since the accuracy of our models can vary significantly from one epoch to
another, largely due to the training sampling and randomized minibatch
assignments, a model-averaging technique was used to reduce prediction
variance. To obtain final risk predictions for the testing patients that are
stable, we perform model averaging using the models from epochs 96 to
100 to smooth variations across epochs and increase stability. Formally, the
model-averaged risk for patient m is calculated as

R*m =
1
5

X100
γ=96

R*mðγÞ, [2]

where R*mðγÞ denotes the predicted risk for patient m in training epoch γ.

Validation Procedures. Patients were randomly assigned to nonoverlapping
training (80%) and test (20%) sets that were used to train models and evaluate
their performance. If a patient was assigned to training, then all slides corre-
sponding to that patient were assigned to the training set and likewise, for the
testing set. This ensures that no data from any one patient are represented in
both training and testing sets to avoid overfitting and optimistic estimates of
generalization accuracy. We repeated the randomized assignment of patients
training/testing sets 15 times and used each of these training/testing sets to
train and evaluate amodel. The same training/testing assignmentswere used in
eachmodel (SCNN, GSCNN, baseline) for comparability. Prediction accuracywas
measured using Harrell’s c index to measure the concordance between pre-
dicted risk and actual survival for testing samples (36).

Statistical Analyses. The c indices generated by Monte Carlo cross-validation
were performed using the Wilcoxon signed rank test. This paired test was
chosen, because each method was evaluated using identical training/testing
sets. Comparisons of SCNN risk values across grade were performed using the
Wilcoxon rank sum test. Cox univariable and multivariable regression analyses
were performed using predicted SCNN risk values for all training and testing
samples in randomized training/testing set 1. Analyses of the correlation of
grade, molecular subtype, and SCNN risk predictions were performed by
pooling predicted risks for testing samples across all experiments. SCNN risks
were normalized within each experiment by z score before pooling. Grade
analysis was performed by determining “digital”-grade thresholds for SCNN
risks in each subtype. Thresholds were objectively selected to match the pro-
portions of samples in each histologic grade in each subtype. Statistical analysis
of Kaplan–Meier plots was performed using the log rank test.

Hardware and Software. Prediction models were trained using TensorFlow
(v0.12.0) on servers equipped with dual Intel(R) Xeon(R) CPU E5-2630L v2 @
2.40 GHz CPUs, 128 GB RAM, and dual NVIDIA K80 graphics cards. Image data
were extracted from Aperio .svs whole-slide image formats using OpenSlide
(openslide.org/). Basic image analysis operations were performed using
HistomicsTK (https://github.com/DigitalSlideArchive/HistomicsTK), a Python
package for histology image analysis.

Data Availability. This paper was produced using large volumes of publicly
available genomic and imaging data. The authors have made every effort to
make available links to these resources as well as make publicly available the
software methods and information used to produce the datasets, analyses,
and summary information.
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